ASU VELOS Team Finalist in NASA Big Idea Challenge
ASU students’ lunar exploration system is a finalist in NASA competition
Luminosity Lab team designed a launcher and probe that could help shed light on the moon’s mysterious regions
With a pop, the flash of a small round something makes a graceful arc against a starry sky. But it’s not the cork from a bottle of celebratory Champagne. Nor is it a baseball after a home run hit.
It’s a probe. And if all goes according to plan, its launcher will hurl it not across Earth, but the moon.
VELOS, short for Variable Exploratory Lunar Observation System, is a specially designed launcher and probe system created by a team of Arizona State University students from the Luminosity Lab. The group is one of eight university teams that NASA named as finalists last spring in its Breakthrough, Innovative, and Game-changing (BIG) Idea Challenge.
“A competition like this is basically the first step on the road map that NASA has built to advance projects, which is really awesome.”
— Tyler Smith, associate director of the Luminosity Lab and staff adviser to the student team
The challenge asks teams to design a technology system that can aid scientific exploration of the moon’s permanently shadowed regions. Finalists received funding to build and test their ideas. The ASU team, along with the others, submitted its final report to NASA this week. The students will present their design to a panel of judges at the virtual BIG Idea Challenge forum planned for early 2021, with NASA announcing the winner at the end of the event.
Making it into the finals means that the students get the chance to work with NASA and industry experts as well as the project’s faculty adviser, Professor Jim Bell of the School of Earth and Space Exploration, who has worked extensively on NASA exploration missions.
“This competition was an amazing chance for these students to learn about the process of getting an idea from the drawing board into a potential deep-space application,” Bell said. “Because of the pandemic, it's also been invaluable practice in working as a distributed, virtual, interdisciplinary team. That experience has been doubly important for them because not only is this how much of the commercial space industry is operating these days, it's how much of the global space industry operates even during normal times.”
In addition, it opens the door to submitting for further NASA funding opportunities, said Tyler Smith, associate director of the Luminosity Lab and staff adviser to the student team.
“A competition like this is basically the first step on the road map that NASA has built to advance projects, which is really awesome,” he said. Regardless of whether their team wins, the students plan to continue advancing their concept.
Ancient moon popsicles
NASA’s challenge focused on the moon’s permanently shadowed regions because they are difficult to study, yet could have vital impact on the future of space travel.
These areas, called PSRs, are craters located at the moon’s poles that never see sunlight. That’s because the moon spins nearly perpendicular to the sun, so these depressions at the top and bottom are never angled toward it.
Not only are PSRs very dark, they’re also incredibly cold. In fact, PSRs are the coldest places in the entire solar system. NASA’s Lunar Reconnaissance Orbiter, an observation satellite that circles the moon, recorded a temperature of -397 F in one of the moon’s south pole craters — even colder than Pluto.
The extremes of PSRs make them difficult to explore. Many rovers rely on solar power for energy, which is unavailable in these regions, and electronics fail at these cold temperatures without a source of heat. However, finding and using a successful solution to these problems could have a huge payoff. Data from the Lunar Reconnaissance Orbiter suggests that there could be water stored as ice within these PSRs.
So why do scientists care about some ancient moon popsicles? If PSRs really do hold water, that water could be extremely useful. It could sustain human and plant life on an extended moon mission. It could also be a fuel source, since separating and recombining water’s hydrogen and oxygen creates energy. This would be handy not only for astronauts staying on the moon, but also for a longer interplanetary mission. A rocket could leave Earth with less fuel — and therefore more spare weight for extra equipment — and refuel on the moon, just like stopping at a gas station.